1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64 | # The k parameter defining the number of rows used in our circuit (2^k)
k = 11;
field = "pallas";
# The constants we define for our circuit
constant "Mint_V1" {
EcFixedPointShort VALUE_COMMIT_VALUE,
EcFixedPoint VALUE_COMMIT_RANDOM,
EcFixedPointBase NULLIFIER_K,
}
# The witness coin_values we define for our circuit
witness "Mint_V1" {
# X coordinate for public key
Base coin_public_x,
# Y coordinate for public key
Base coin_public_y,
# The coin_value of this coin
Base coin_value,
# The coin_token_id ID
Base coin_token_id,
# Allows composing this ZK proof to invoke other contracts
Base coin_spend_hook,
# Data passed from this coin to the invoked contract
Base coin_user_data,
# Unique serial number corresponding to this coin
Base coin_blind,
# Random blinding factor for the coin_value commitment
Scalar value_blind,
# Random blinding factor for the coin_token_id ID
Base token_id_blind,
}
# The definition of our circuit
circuit "Mint_V1" {
# Poseidon hash of the coin
C = poseidon_hash(
coin_public_x,
coin_public_y,
coin_value,
coin_token_id,
coin_spend_hook,
coin_user_data,
coin_blind,
);
constrain_instance(C);
# Pedersen commitment for coin's coin_value
vcv = ec_mul_short(coin_value, VALUE_COMMIT_VALUE);
vcr = ec_mul(value_blind, VALUE_COMMIT_RANDOM);
coin_value_commit = ec_add(vcv, vcr);
# Since the coin_value commit is a curve point, we fetch its coordinates
# and constrain them:
constrain_instance(ec_get_x(coin_value_commit));
constrain_instance(ec_get_y(coin_value_commit));
# Commitment for coin's coin_token_id ID. We do a poseidon hash since it's
# cheaper than EC operations and doesn't need the homomorphic prop.
coin_token_id_commit = poseidon_hash(coin_token_id, token_id_blind);
constrain_instance(coin_token_id_commit);
# At this point we've enforced all of our public inputs.
}
|